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Executive Summary 
This report presents a summary of the Safe Water Optimization Tool (SWOT) artificial 

neural network (ANN) analytics and seeks to provide transparency into these analytics. 

The SWOT-ANN analytics were introduced to address the high levels of uncertainty in 

post-distribution chlorine decay, which poses a major challenge in modelling household 

free residual chlorine (FRC) in refugee and internally displaced person (IDP) 

settlements. To overcome this uncertainty, the SWOT-ANN analytics use ANNs, a type 

of data driven model, to avoid making assumptions about the uncerlying decay 

behaviour, and groups these models into an ensemble forecast which models 

household FRC probabilistically, allowing water system operators to understand the risk 

of drinking water having insufficient FRC at the household. 

One of the key features of the SWOT-ANN version 2 analytics is dynamic input variable 

selection, where the input variables for the models are determined based on the dataset 

uploaded by the user. The SWOT-ANN always uses tapstand FRC, elapsed time, and 

time of collection as input variables, but if a sufficient number of measurements are 

available, the SWOT-ANN also uses electrical conductivity and water temperature.  

The SWOT-ANN version 2 analytics also include new performance diagnostics which 

investigate the probabilistic performance using the percent capture, confidence interval 

reliability diagram, rank histogram, and continuous ranked probability score. These 

scores provide a better indication of the probabilistic performance of the ANN 

ensembles and are thus better diagnostics of the accuracy of the risk-based FRC 

targets generated by the SWOT, as copared to deterministic performance measures like 

R2. To improve the probabilistic performance, the SWOT-ANN version 2 analytics also 

feature ensemble post-processing using kernel dressing which is a distribution-free 

post-processing method, meaning that this method improves the forecasting 

performance without forcing the forecast to fit a pre-defined distribution 

The version 2 analytics of the SWOT-ANN also introduce a scenario analysis feature 

which generates multiple risk-based FRC targets based on tapstand water quality 

scenarios, as well as the time of collection which has substantial impact on the post-

distribution FRC decay.  This provides water system operators with additional 

information, allowing them to tailor their risk-based FRC targets to site conditions. This 

also allows water system operators to better understand decay behaviours occurring on 

site. 

This White Paper is intended as a living document, with updates introduced as further 

refinement of the SWOT-ANN version 2 analytics are applied. We also include 

appendices that summarize key analyses we performed to select the modelling 

parameters included in the version 2 analytics, and a functions glossary to summarize 

the functions include in the SWOT-ANN version 2 code, which is available on GitHub 

here: https://github.com/safeh2o/swot-python-analysis

https://github.com/safeh2o/swot-python-analysis
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1 Introduction 

1.1 Motivation 
This white paper presents the details of the second version of the Safe Water 

Optimization Tool artificial neural network tool (SWOT-ANN). The SWOT-ANN is a 

probabilistic, data-driven, tool used to generate free residual chlorine (FRC) guidance 

for water system operators in humanitarian response settings. These analytics were 

introduced to address two of the major challenges of modelling FRC during the post-

distribution phase of collection, transport, storage, and use. The first major challenge is 

the limited study into the specific phenomena that drive chlorine decay during the post-

distribution phase. This leads to a limited understanding of the expected chlorine decay 

behaviour, especially as this behaviour may change over the course of household 

storage as new contaminants may be introduced. All of this makes it difficult to select an 

appropriate decay model for the post-distribution phase. To overcome this, we use 

ANNs which are a data driven approach that can learn the behaviour from the 

underlying data without making any prior assumptions about the chlorine decay 

behavior. The second major challenge of modelling FRC during the post-distribution 

phase is that the decay behaviour is highly variable and may be impacted by a number 

of factors, many of which may not be easily quantifiable (e.g., user interactions with the 

water, frequency of container cleaning, change in water temperature during storage, 

etc.). In practice, this results in a single set of conditions at the tapstand producing a 

range of household FRC concentrations, making point predictions of household FRC 

insufficient. To overcome this challenge, the SWOT-ANN used a probabilistic ensemble 

modelling approach by grouping the predictions of multiple individual ANNs into a 

probabilistic ensemble forecast. This forecast quantify the uncertainty in the predicted 

household FRC concentration and provide information about the distribution of 

household FRC concentrations. We developed a probabilistic modelling approach by 

developing an ensemble of ANNs. The SWOT-ANN uses these probabilistic forecasts to 

generate risk-based tapstand FRC guidance based on the probability of having 

insufficient FRC (<0.2 mg/L) at the point of consumption in the household. This white 

paper presents the details of the analytics used to generate this probabilistic FRC 

guidance in an effort to provide transparency into the analytical approach taken in the 

SWOT-ANN version 2 analytics. The SWOT-ANN code is available on the SWOT 

project GitHub page at: https://github.com/safeh2o/swot-python-analysis. 

1.2 Included in this Report 
Section 1 of this report provides the introduction to the SWOT-ANN and the motivation 

for this tool as well as this white paper. Section 2 provides a high-level summary of the 

version 2 SWOT-ANN tool. Sections 3 and 4 provides a summary of the backend tasks 

included in the SWOT-ANN, with Section 3 covering the importing of the data as well as 

data pre-processing tasks and input variable selection and Section 4 providing the 

details of training the ensemble model starting with the model set up and extending to 

evaluating the model performance and post-processing the results. Finally, Section 5 

https://github.com/safeh2o/swot-python-analysis
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summarizes how the SWOT-ANN generates a recommendation and provides guidance 

on using the outputs to determine the FRC target. There is also a glossary of the 

functions implemented in the SWOT-ANN code and appendices summarizing some of 

the key decisions that went into preparing version 2 of the SWOT-ANN. 

2 Workflow of the Version 2 SWOT ANN Analytics 
Figure 1 provides a high-level workflow of the process used to generate risk-based FRC 

guidance using the SWOT ANN version 2 analytics. The uploaded data set is first pre-

cleaned by the SWOT web analytics prior to importing the data into Python. Once 

imported into Python, additional data pre-processing occurs to ensure that the SWOT-

ANN is able to run. This step also includes selecting the appropriate input variable 

combination. After this, the model is set up and the data is used to train each individual 

neural network in the ensemble. Third, we evaluate the model performance using the 

provided data to understand how well the models reproduce the underlying behaviour. 

At this point we also post-process the ensemble predictions to determine if post-

processing improves the model performance. Fourth, we use several sets of fixed inputs 

to perform a scenario analysis by simulating potential conditions at the tapstand. If post-

processing was shown to improve performance in the third step, we also post-process 

the forecasts on fixed inputs. Finally, we use these forecasts to predict the risk of 

inadequate household FRC and to generate a recommendation for a series of 

scenarios. 

 

Figure 1: High-level modelling workflow 

3 Importing the Data 
Data is received by the ANN analytical module following some initial pre-cleaning 

through the SWOT web tool. At this point, the SWOT ANN analytics import the data as 

a .csv file and perform the following tasks: 

1. The column names are used to identify the input variables and the output 

variable (household FRC). 

2. The tapstand and household timestamps for each sample are used to determine 

the elapsed time in hours for each sample as well as the time of collection, which 

is converted into a binary variable for collection before or after noon (AM/PM 

collection). 

3. The input variable set is determined (Section 3.1)  
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4. For the selected input variables, rows with missing entries for any variable are 

removed. This step is required for training the ANNs as training will stop if a 

missing value is encountered.  

3.1 Input Variable Selection 
Input variable selection for the SWOT ANN analytics is not predefined and instead is a 

dynamic process with the input variables selection occurring within the SWOT-ANN. All 

possible input variables, and the rationale for their inclusion, are listed below: 

• Tapstand FRC: The tapstand FRC is intuitively a crucial variable for modelling 

household FRC. This is confirmed by a partial correlation analysis by De Santi et 

al. (2021) that showed that of all routinely collected water quality variables for 

refugee and IDP settlements, tapstand FRC has the greatest influence on the 

household FRC. 

• Elapsed time (hours): The elapsed time here refers to the period of time 

beginning when water leaves the tapstand and ending at the time of the 

household FRC measurement. While FRC decay is a time dependent reaction, 

past studies have shown that elapsed time on its own is not a strong predictor of 

point-of-consumption FRC, likely due to confounding with other variables, such 

as the time-of-collection (De Santi et al., 2021). For this reason, we include both 

elapsed time and time-of-collection in the ANN models to help clarify the 

influence of elapsed time. The rationale for the selection of time-based variables 

is provided in Appendix A. 

• Time of Collection (binary, AM/PM): This variable denotes the time of 

collection measured when water leaves the tapstand. This time of collection is 

converted into a binary variable for AM or PM collection (for samples collected 

before and after 12:00 noon, respectively). This variable is included to help clarify 

the influence of elapsed time by disaggregating the data into morning collection 

which includes hotter periods of the day and which typically allows for more user 

interaction with the water due to daytime storage, and afternoon collection which 

typically includes overnight storage where water temperatures are cooler and 

less user interaction. This variable was included based on an investigation into 

alternative approaches to incorporating time-related data into the ANN model. 

Further detail on the selection of time of collection as an input variable is included 

in Appendix A. 

• Tapstand Water Temperature (°C): Water temperature is measured from the 

water directly as it leaves the tapstand. We included this variable as water 

temperature has been shown to impact FRC decay due to the effect of water 

temperature on the rate of chemical reactions in studies of piped distribution 

systems (Clark and Sivaganesan, 2002; Fisher et al., 2017; Powell et al., 2000; 

Warton et al., 2006). Water temperature has also been shown to have an impact 

on post-distribution FRC decay (De Santi et al., 2021). 
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• Electrical Conductivity (μs/L): Electrical conductivity (EC) is measured from the 

water directly as it leaves the tapstand. EC is an indicator of dissolved ions and is 

not a direct measure of chlorine demand in the water (World Health Organization, 

2011), though it may provide an indication of inorganic chlorine demand. We 

have included EC in the model as past studies have found that EC to be strongly 

associated with FRC decay during the post-distribution phase (Ali et al., 2015; De 

Santi et al., 2021). 

Of the potential input variables, the first three: tapstand FRC, elapsed time, and time of 

collection are always included in the model as all records will require at least FRC and 

timestamp information for the tapstand and household. Water temperature and EC, 

however, may not be available at all sites. For this reason, the SWOT-ANN analytics 

check for the number of observations missing each of these measurements and if more 

than 90% of the records are missing a measurement for one of these variables, that 

variable is removed. The 90% missing measurement threshold was selected as an 

indicator that a variable was not included in routine water quality monitoring. We use the 

90% threshold instead of a 100% threshold in cases where there may be data entry 

issues, transition between data collection practices, or other anomalies where a very 

small number of samples have these measurements are included despite these 

variables not being included in routine monitoring. We based this decision on an 

analysis of model performance across SWOT sites using different variable combinations 

which found that the SWOT-ANN models tended to perform best when more water 

quality variables were included, even when a large percentage of records for those 

water quality measurements were missing. More details on this analysis and on the 

selection of the 90% threshold for removing input variables are included in Appendix B. 

4 Training the SWOT-ANN model 

4.1 Model Set-Up and Architecture 
The model architecture used by the SWOT-ANNs is an ensemble of 200 artificial neural 

networks. The individual neural networks in the ensemble are referred to as the base 

learners. The base learners used for the SWOT-ANN ensemble are multi-layer 

perceptrons (MLPs). This type of ANN consists of three types of layers of 

interconnected nodes: an input layer, one or more hidden layers, and an output layer, 

as shown in Figure 1. The MLP structure with one hidden layer was selected because it 

has been shown to outperform other types of ANN architectures and data-driven models 

for predicting FRC in piped distribution systems, especially when predicting extreme 

values (Gibbs et al., 2006; Rodriguez and Sérodes, 1998). Additionally, this ANN 

structure has been demonstrated to be an effective architecture for modelling post-

distribution FRC (De Santi et al., 2021). In the MLP, predictor variable data enters the 

model at the input layer, is fed forward to the hidden layer, and then data from each 

node of the hidden layer is passed to the output layer. As data move along the 

connections from one layer to the next, the values are multiplied by a weight specific to 

that connection. At each node an activation function determines if information will 
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continue to propagate through the network and a numerical bias is added to the value at 

that node.  

 

Figure 2: Schematic of an MLP showing flow of data from the input layer to the output layer with weights and biases. 
The shown MLP with two input nodes and one output node would have two input variables (other water quality 
parameters, etc.) and one output (household FRC).  

The MLP base learners used in the SWOT-ANNs have 1 output node for the single 

output variable (household FRC), and twelve hidden nodes which was determined via a 

preliminary analysis of model performance using datasets from three sites actively using 

the SWOT-ANN analytics. The size of the input layer is not predetermined and is 

instead selected to match the number of input variables, which is determined during the 

importing of the input data (c.f. Section 3.1). This is a departure from version 1 of the 

SWOT-ANN where the model architecture was predefined, but the change is necessary 

to facilitate a flexible approach to input variable selection. The SWOT-ANN base 

learners use a hyperbolic tangent activation function on the hidden layer and a linear 

activation function on the output layer. 

4.2 Training the Ensemble 
To train and test the ensemble base learners, the imported dataset is first rescaled 

between -1 and 1 using the SciKit Learn MinMaxScaler package (Pedregosa et al., 

2011) to speed up the convergence of the training process and to ensure that all input 

variables contribute equally to the output variable at the beginning of training. The 

overall dataset is then divided into two subsets: the training set and the validation set. 

These subsets are determined by randomly sampling 33.3% of the data for training and 

66.7% for validation. The sampling is randomized for each base learner so that the 

allocation of the dataset into the training and validation subsets is different for each 

individual ANN. The network is trained by starting with a random set of weights and 
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biases which are then iteratively adjusted to minimize the mean squared error (MSE) of 

the predictions on the training set using the Nadam backpropagation training algorithm. 

During training, the MSE on the validation set is also calculated and is used to 

determine the stopping point when training the base learners. Initially during training, 

both the training and validation MSE should decrease, indicating improvement, but as 

training continues these will diverge, with the training MSE continuing to decrease while 

the validation MSE increases. This indicates that that the model is overfitting (i.e., 

becoming overly specific to the training data and thus less useful for predicting on new 

data). When the validation MSE begins to increase, training was stopped using an early 

stopping procedure. The early stopping procedure in the SWOT-ANN uses a patience of 

10 epochs, meaning that after the validation MSE begins to increase, training continues 

for 10 more epochs (iterations) to see if the validation MSE will decrease again, at 

which point training resumes as normal. If the validation MSE does begin to decrease 

again, then the SWOT-ANN restores the weights and biases from the iteration with the 

lowest validation MSE. At this point training is complete. The model weights and biases 

are saved, and then the Tensorflow training state is reset for the next base learner in 

the ensemble. This reset is critical for removing training state data and ensuring that the 

individual ensemble members are independent of each other.  

4.3 Evaluating Model Performance 
Once all 200 base learners have been trained, their predictions on the full dataset are 

used to evaluate the probabilistic performance of the ensemble model. To do this, the 

trained ensemble is used to predict the household FRC for all observations in the full 

dataset, and the predictions from all 200 base learners are grouped into a probability 

density function (pdf) for each observation. This pdf is referred to as the forecast and 

each forecast and its corresponding observation is a forecast-observation pair. The 

SWOT-ANN then evaluates the probabilistic performance of these forecasts using 4 

performance metrics: the percent capture, the confidence interval (CI) reliability score, 

the 𝛿-score, and the continuous ranked probability score (CRPS). Throughout the 

following section, 𝑂 refers to the full set of observed point-of-consumption FRC 

concentrations and 𝑜𝑖 refers to the 𝑖𝑡ℎ observation, where there are 𝐼 total observations. 

𝐹 refers to the full set of forecasted point-of-consumption FRC concentrations 

forecasted by the ensembles, where 𝑓𝑖
𝑚 is the prediction by the 𝑚𝑡ℎ base learner in the 

ensemble on the 𝑖𝑡ℎ observation and 𝐹𝑖 refers to the ensemble forecast for the 𝑖𝑡ℎ 

observation. Thus, for each observation there is a corresponding probabilistic forecast. 

Together these are referred to as a forecast-observation pair. For the following metrics, 

it is assumed that the predictions of each base learner in the ensemble are sorted from 

low to high for each observation such that 𝑓𝑖
𝑚 ≤ 𝑓𝑖

𝑚+1 from 𝑚 = 0 to 𝑚 = 𝑀. 

 

Note, typically the performance of an ensemble forecast is only evaluated on data that 

has not been used in the training or calibration of the model. However, for the SWOT-

ANN this would require either a two-step training process (first with the test set left out, 
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then again with the full set) or it would require some data to be left out from the training 

process. Thus, the performance evaluation included in the SWOT-ANN analytics is 

performed using the same data that was used to train and validate the ensemble with 

the knowledge that the resulting ensemble performance is only an approximation of 

performance and does not necessarily reflect the performance we would expect on new 

data. 

4.3.1 Percent Capture 
Percent capture measures the percentage of observations where the observed 

household FRC concentration was within the limits of the ensembles forecast. The 

percent capture is a positively oriented score, meaning that a higher percent capture 

indicates better performance (more observations capture within the forecast limits) with 

an upper limit of 100% and a lower limit of 0%. Observation 𝑜𝑖 is considered captured if 

𝑓𝑖
0 ≤ 𝑜𝑖 ≤ 𝑓𝑖

𝑀. When evaluating the ensemble performance, the SWOT-ANN considers 

both the percent capture of the overall dataset (referred to in this report as 𝑃𝐶) as well 

as the percent capture of observations with point-of-consumption FRC below 0.2 mg/L 

(𝑃𝐶<0.2). 

4.3.2 CI Reliability Score 
The CI reliability score is derived from the CI reliability diagram which shows the 

percentage of total observations captured within each ensemble CI within the ensemble 

plotted against the CI level. This provides a visual indicator of ensemble performance as 

the ideal model will have all points plotted along the 1:1 line showing that the observed 

probabilities are equal to the forecasted probabilities. The CI reliability score is 

calculated as the squared distance between the percent capture within each CI and the 

ideal percent capture in that CI (De Santi et al., 2021). This was calculated for each CI 

threshold, 𝑘, from 10% to 100% in 10% increments as shown in Equation 1. Since a 

smaller absolute distance means that each point is closer to the 1:1 line, this score is 

negatively oriented with a minimum value of 0. The SWOT-ANN plots CI reliability 

diagrams and calculates the CI reliability score for both the overall data set (𝐶𝐼𝑠𝑐𝑜𝑟𝑒) and 

for forecast-observation pairs where the observed point-of-consumption FRC 

concentration was below 0.2 mg/L (𝐶𝐼𝑠𝑐𝑜𝑟𝑒<0.2
). 

𝐶𝐼 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = ∑ (𝑗 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑖𝑛 𝐶𝐼𝑗)
21

𝑘=0.1  (1) 

4.3.3 Rank Histogram 𝛿-score 
The Rank Histogram (RH) is another visual tool used to assess the reliability of 

ensemble forecasts. It is constructed by assigning a rank to each observation based on 

the observed household FRC value relative to the predicted value of each ensemble 

member and then making a histogram of these ranks. If the forecast and observed 

probabilities are the same, then any observation is equally likely to occur in any rank of 

the ensemble, which would result in a flat rank RH (uniform distribution). If the 

forecasted and observed probability distributions are different, then the rank histogram 

will not be flat and may be either u-shaped, indicating underdispersion, arch-shaped, 
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indicating overdispersion; or skewed, indicating bias (Hamill, 2001; Talagrand et al., 

1997). The flatness, or degree of uniformity, of the RH is quantified in the 𝛿 score which 

measures the deviations from flatness in the RH (Equation 2). The ideal 𝛿-score is 1 

with scores much greater than 1 indicating substantial deviations from flatness and 

scores less than 1 indicating interdependence between ensemble predictions (Candille 

and Talagrand, 2005). The SWOT-ANN calculates the 𝛿 score for each model both for 

the overall dataset (𝛿) and for only those observations where the observed point-of-

consumption FRC was below 0.2 mg/L (𝛿<0.2). 

𝛿 =
∆

∆𝑜
  (2) 

The two components of the 𝛿 score are shown in Equations 3 and 4 where 𝑀 is the total 

number of ensemble members (200 for the SWOT -ANN model), 𝐼 is the total number of 

observations, and 𝑠𝑘 is the number of elements in the 𝑘𝑡ℎ bin of the rank histogram 

(Candille and Talagrand, 2005). 

∆= ∑ (𝑠𝑘 −
𝐼

𝑀+1
)

2
𝑀+1
𝑘=1   (3) 

∆𝑜=
𝐼∗𝑀

𝑀+1
 (4) 

4.3.4 Continuous Ranked Probability Score 
The continuous ranked probability score (CRPS) measures the area between the 

forecast cumulative distribution function (cdf) and the observed cdf for each forecast-

observation pairing. For a given forecast-observation pair, the cdf of the forecast is 

calculated from the ensemble forecast pdf. Since each observation is a discrete value, 

its cdf is represented with the Heaviside function 𝐻{𝑥 ≥ 𝑥𝑎}; a stepwise function which is 

0 for all concentrations of point-of-consumption FRC below the observed FRC and 1 for 

all concentrations of household FRC above the observed concentration. The calculation 

of the CRPS is given in Equation 5 where 𝐹𝑖 is the cdf of the forecast values for 

observation 𝑜𝑖 and the 𝑥 axis referenced is the concentrations of point-of-consumption 

FRC concentration. Note that Equation 5 shows the calculation of CRPS for a single 

forecast-observation pairing. To evaluate the ensemble models, the average CRPS, 

𝐶𝑅𝑃𝑆, is calculated by taking the mean CRPS over all forecast-observation pairs. 

𝐶𝑅𝑃𝑆 = ∫ (𝐹𝑖(𝑥) − 𝐻{𝑥 ≥ 𝑜𝑖})2𝑑𝑥 
∞

−∞
 (5) 

When using post-processed forecasts (Section 4.4) the SWOT-ANN calculates CRPS 

directly using Equation 5 and take the mean over all forecast-observation pairings. For 

the raw ensemble, the SWOT-ANN uses the Hersbach (2000) decomposition which 

treats the forecast cdf as a stepwise continuous function with 𝑁 = 𝑀 + 1 bins where 

each bin is bounded at two ensemble forecasts and the value in each bin is the 

cumulative probability. 𝐶𝑅𝑃𝑆 is calculated using 𝑔𝑛, the average width of bin 𝑛 (average 

difference in FRC concentration between forecast values 𝑚 and 𝑚 + 1) and 𝑜𝑛 the 
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likelihood of the observed value being in bin 𝑛. Using these values, the 𝐶𝑅𝑃𝑆 for an 

ensemble can be calculated as: 

𝐶𝑅𝑃𝑆 = ∑  𝑔𝑛[(1 −𝑁
𝑛=1 𝑜𝑛)𝑝𝑛

2 + 𝑜𝑛(1 − 𝑝𝑛)2] (Hersbach, 2000) (6) 

Where 𝑝𝑛 is the probability associated with each bin, 𝑝𝑛 =
𝑛

𝑁
 (Hersbach, 2000).  

4.3.5 Model Performance Summary and Outputs 
Figure 3 below shows the interrelation between the ensemble verification metrics. This 

figure shows how the CRPS for each forecast-observation pair is calculated from the 

forecast and observation cdf while RH is obtained through a ranking of the observation 

within the members of the ensemble and finally how percent capture and CI reliability 

are both derived from the overall collection of forecasts and observations.  

 

Figure 3: Interrelation of model performance metrics and visual intuition behind their derivation 

Figure 4 presents the calibration diagnostic figures included in the SWOT-ANN output. 

This figure includes a plot of the predicted and forecast point-of-consumption FRC, the 

CI reliability diagram and the rank histogram. This figure can be a useful tool for 

understanding the reliability of the ensemble forecasts, and thus, the accuracy of the 

resulting targets. Ideally, Figure 4a would show all observations captured within the 

ensemble forecasts, and those forecasts would have a reasonable shape (the forecasts 

should follow the general trends in the underlying data), Figure 4b would have all points 

falling on the 1:1 line and Figure 4c would be a completely flat RH. For the example 

provided below, we see in subplot (a) that there are a number of observations that fall 

outside of the ensemble forecast range (shown with the error bars). Based on this, we 
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can tell that the forecasts are underdispersed (the forecast spread is less than the 

spread of the observations). This is confirmed in Figure 4b where the points generally 

fall below the 1:1 line, and in Figure 4c, where the RH is U-shaped. Both of these are 

further indicators of underdispersion, and while this indicates a performance challenge 

for the SWOT-ANN, it is worth noting that underdispersion is common in ensembles, 

especially ensembles of neural networks. We overcome these challenges in the SWOT-

ANN using both forecast post-processing (Section 4.4) and scenario analysis (Section 

5.1)
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Figure 4: Sample performance evaluation figures, showing underdispersed forecasts, as can be identified via the numerous outlying observations, as well as the 
points in the CI reliability diagram and the u-shaped RH.
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4.4 Post-Processing 
In order to generate effective risk-based FRC targets using the SWOT-ANN, it is 

important that the forecast distribution matches the underlying distribution of the 

observed data. However, there are often dissimilarities between the forecast distribution 

and the distribution of the observed data. Ensemble post-processing is used to modify 

the ensemble forecasts to improve the similarity between the observed and forecast 

distributions. The SWOT-ANN uses kernel dressing to post-process the raw ensemble 

forecasts. This method follows a two-step process: first a kernel function is fit centred on 

each base learner prediction in the forecast for each observation, then each member’s 

kernel is summed together to produce the post-processed pdf which is a non-parametric 

mixture distribution function. The SWOT-ANN uses a Gaussian kernel function in 

keeping with past studies (Boucher et al., 2015, 2011; Bröcker and Smith, 2008; 

Roulston and Smith, 2003), though the selection of the specific kernel function is not 

critical (Boucher et al., 2015). Kernel dressing is implemented in the SWOT-ANN using 

the Scipy Kernel Density Estimation (KDE) toolkit (Virtanen et al., 2020) with the kernel 

bandwidth defined using the Wang and Bishop (2005) method. This approach aims to 

minimize the difference between the variances of the ensemble forecasts and the 

observed data (Wang and Bishop, 2005). We selected the Wang and Bishop approach 

for use in the SWOT-ANN by comparing the ensemble forecasting performance of three 

different bandwidth determination methods which showed that, for post-distribution FRC 

data, the Wand and Bishop (2005) method performed best. The full comparison is 

included in Appendix C. The bandwidth for the kernels is calculated in the SWOT-ANN 

using Equation 7. 

𝜎𝜅𝑊𝐵
2 = (𝑥𝑖 − 𝑦𝑖)2 − (1 +

1

𝑁
) ∗ 𝑠𝑥𝑖

2  (7) 

Where: 

• 𝜎𝜅𝑊𝐵
2  is the kernel bandwidth estimated using the Wang and Bishop (2005) 

method. 

• 𝑥𝑖 is the mean of the raw ensemble forecast of the 𝑖𝑡ℎ observation. 

• (𝑥𝑖 − 𝑦𝑖)2 is the mean error between the forecast mean of the 𝑖𝑡ℎ observation and 

the measured value of the 𝑖𝑡ℎ observations over all 𝑖 observations. 

• 𝑠𝑥𝑖
2  is the mean variance of the ensemble forecasts. 

• 𝑁 is the number of observations. 

The Wang and Bishop (2005) method of kernel bandwidth determination is specifically 

targeted for underdispersed forecasts where the spread of the predictions is less than 

the spread of the observations. This means that in some cases, the use of post-

processing may not improve the overall ensemble performance and may in fact worsen 

the ensemble performance. To ensure that the best-performing option between the raw 

and post-processed ensemble is used, the SWOT-ANN tests the performance of the 
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post-processed ensemble using the percent capture (𝑃𝐶, 𝑃𝐶<0.2), CI reliability score 

(𝐶𝐼𝑠𝑐𝑜𝑟𝑒 , 𝐶𝐼𝑠𝑐𝑜𝑟𝑒<0.2
), and 𝐶𝑅𝑃𝑆and compares these scores to those achieved by the raw 

ensemble (the 𝛿 score is not included in this comparison as the post-processed 

ensemble is a continuous distribution and as such does not have clearly defined “ranks” 

the way that the raw ensemble does). The SWOT-ANN performs this comparison using 

a skill score calculation which normalizes the change in performance from a reference 

baseline between negative infinity and 1 (Equation 8). For comparing the raw and post-

processed ensembles, the raw ensemble score is used as the baseline score and the 

post-processed score is used as the score obtained. The ideal score is dependent on 

the metric, for percent capture the ideal score is 100%, for the CRPS and CI reliability 

scores, the ideal score is 0. 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖𝑑𝑒𝑎𝑙 𝑠𝑐𝑜𝑟𝑒−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (8) 

After calculating the skill score for all performance metrics, the SWOT-ANN selects the 

preferred forecasting approach (raw or post-processed) by taking the sum of the skill 

scores for each metric. If this sum is greater than zero, than post-processing yields and 

net performance improvement and the post-processing approach selected. If the sum of 

the skill scores is equal to or less than 0, the raw ensemble is used.  

5 Obtaining a Tapstand FRC Target 
The SWOT-ANN generates a risk-based FRC target by using the trained ANN 

ensemble to forecast the household FRC for tapstand FRC concentrations ranging from 

0.2 to 2.0 mg/L in 0.05 mg/L increments. For each tapstand FRC concentration, the 

predicted risk of insufficient FRC is calculated as the probability of the household FRC 

being below 0.2 mg/L which is taken from the forecast cdf. If the target is being 

generated using the raw ensemble, this is obtained directly as the percentage of 

ensemble members that predicted that the household FRC below 0.2 mg/L. If using the 

post-processed ensemble, the predicted risk is obtained through s numerical integration 

of the post-processed pdf. 

When generating the risk-based FRC targets, the tapstand FRC is incremented 

between 0.2 and 2.0 mg/L and all other input variables are held static. The elapsed time 

used is the user inputted target storage duration. To account for the effect of the 

remaining input variables (time of collection, EC, water temperature) on the FRC target, 

the SWOT-ANN implements a scenario analysis approach which considers different 

time of collection and water quality scenarios to produce a series of risk-based FRC 

targets. 

5.1 Scenario Analysis 
The SWOT-ANN uses scenario analysis to account for the influence of both the time of 

collection and tapstand water quality conditions when generating risk-based FRC 

targets. The time of collection scenario analysis generates two FRC targets: one for 

water collected from the tapstand before 12:00 noon (‘AM Collection’) and one for water 



14 
 

collected after 12:00 noon (‘PM Collection’). Since the time-of-collection variable is 

always included in the input variable combination, the SWOT-ANN always produces a 

target for both scenarios. If no additional water quality variables (EC, water 

temperature) are included, then these are the only two scenarios considered by the 

SWOT-ANN analytics. If at least one of the two additional water quality variables is 

included in the model, the SWOT-ANN also generates FRC targets for two decay 

scenarios: an “average case” scenario which uses the median EC and/or water 

temperature values, and a “worst case” scenario which uses the 95th percentile EC 

and/or water temperature values. The selection of the 95th percentile as a “worst case” 

is based both on an empirical understanding of FRC decay behaviour: high water 

temperature will accelerate chemical reaction kinetics and thus increase the rate of FRC 

decay, and higher EC is indicative of dissolved inorganics which may indicate chlorine-

consuming metals. This theoretical understanding is also supported by the findings of a 

proof-of-concept evaluation of risk-based FRC targets generated using ensembles of 

ANNs which showed that in most cases, EC and water temperature are at least 

moderately negatively correlated with household FRC and higher water temperature 

and EC values produced more conservative FRC targets (De Santi et al., 2021). The 

SWOT-ANN considers the decay scenarios in conjunction with the time of collection 

scenarios. Thus, if either EC or water temperature are included in the model, the 

SWOT-ANN produces FRC targets for four scenarios: 

• “AM Collection” with “average case” decay conditions. 

• “AM Collection” with “worst case” decay conditions. 

• “PM Collection” with “average case” decay conditions. 

• “PM Collection” with “worst case” decay conditions. 

5.2 Outputs and Interpretation 
When generating the risk-based FRC targets, the SWOT-ANN produces the following 

outputs: 

1. Forecast plots showing the ensemble forecasts of household FRC for all 

scenarios (Figures 5, 6 and 7) 

2. Histograms of the input variables used (Figure 8) 

3. Plot of predicted risk against tapstand FRC (Figures 9 and 10), and output tables 

of the predicted risk of insufficient point-of-consumption FRC (Tables 1 and 2) 

The following sections provide a detailed summary of how we recommend interpreting 

these outputs. A summary is provided in Section 5.2.4. 

5.2.1 Interpreting Output 1: Forecast Plots 
Figure 5 shows the forecasted household FRC generated by the SWOT-ANN for a site 

where both EC and water temperature were included in the dataset. The four subplots 

in figure 5 correspond to the four scenarios identified in Section 5.1. Figure 6 shows the 

FRC forecasts generated by the SWOT-ANN for the same site when the EC and water 

temperature measurements are removed from the dataset. These figures are primarily 
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used as a visual diagnostic tool to verify that the model accurately reproduces the 

underlying trends in the observed data. These figures show the forecast median, 

forecast range, and the 95th percentile range of the forecast from the forecasts 

generated by predicting on fixed data as well as the observations used to train and 

validate the ANN models. When reviewing these plots there are three important factors 

to check. First, the forecast median should increase as the tapstand FRC concentration 

increases. Second, the shape of the forecast range and 95th percentile ranges should 

be acceptable, meaning that the upper and lower bounds of the forecast range and the 

95th percentile range should all increase as the tapstand FRC increases. Furthermore, 

while some over or underprediction is expected, these bounds should be generally 

reasonable. Third, the forecast range should include most of the observations with 

household FRC below 0.2 mg/L (observations falling below the dashed line). This third 

check is often the most difficult to obtain due to forecast underdispersion. 

When reviewing Figures 5 and 6 below, the median forecast household FRC increases 

with increasing tapstand FRC for all scenarios. Additionally, while in some cases the 

forecast extends below 0 or above the tapstand FRC concentration, there are no 

substantial outliers and the upper and lower bounds of both the forecast range and the 

95th percentile range generally increase as the tapstand FRC increases, all of which 

indicate that the forecast shape is reasonable. Finally, while none of the forecasts 

capture all of the observations with household FRC below 0.2 mg/L, the worst-case 

forecasts in Figure 5 capture most of these observations. This provides a useful 

reference when selecting a tapstand FRC target from the risk predictions, as discussed 

in the sections below. It should be noted that neither of the scenarios in Figure 6 meet 

this final check , indicating that either a factor of safety would need to be applied, or the 

FRC target generated by the SWOT Engineering Optimization Tool (SWOT-EO) should 

be used. 
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Figure 5: Sample SWOT-ANN output for dataset with additional water quality variables included (EC, water 
temperature) 
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Figure 6: Sample SWOT-ANN output for dataset without additional water quality variables (EC, water temperature) 

Figure 7 shows a special case when interpreting the household FRC forecast plots 

where there is either very sparse data or very limited data. In this figure, none of the 

forecasts effectively capture the observations with low household FRC. However, due to 

the sparse dataset, a useful FRC target can be visually identified from the graph by 

determining the tapstand FRC where there are no observations below the dashed line. 

In this case, we can see that a tapstand FRC of 0.6 mg/L would be sufficient to ensure 

sufficient protection at the household based on the data collected.  
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Figure 7: Predictions with sparse data. Note poor coverage of unsafe values but required tapstand FRC can be easily 
identified visually. 

5.2.2 Interpreting Output 2: Input and output variable histograms 
The input and output variable histograms are useful tools to understanding the water 

quality trends on a site. They are also useful for evaluating the parameters selected for 

the scenario analysis which can be helpful when selecting an FRC target. Specifically, 

while we always recommend selecting the most conservative tapstand FRC target, the 

histogram for time of collection can be used to determine if there is a dominant 

collection time on site (between AM and PM) which can be used to select between the 

AM and PM risk targets. Additionally, if EC or water temperature are included as input 
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variables, the histograms provide an indication of the distribution of these variables as 

well as indicating which values were used for the average and worst-case scenarios. 

Figure 8 shows the input variable histogram for the dataset used in Figure 2. From this 

figure we note several important factors. First, both the EC and water temperature 

observations appear to be from multi-modal distributions, meaning that in practice the 

EC and water temperature both tend to cluster around certain common values. When 

generating the scenario analysis, we see that for water temperature, both the average 

case and worst case values were drawn from the same cluster within the multi-modal 

distribution, with the median and 95th percentile values only separated by a few degrees 

Celsius. By contrast, the average and worst case EC values were drawn from different 

clusters within the multi-modal distribution, and with the worst case value nearly 1.5 

times greater than the average case EC value. These are not necessarily good or bad, 

but these demonstrate interesting trends in the tapstand water quality at this stie. 

Finally, these histograms show that both times of collection (AM and PM) are well 

represented, but AM collection is more common. 
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Figure 8: Input and output variable histograms. 

5.2.3 Interpreting Output 3: Risk Predictions 
After reviewing the predictions and the input and output variable histograms, the final 

outputs to review are the predicted risk figure and the associated tables. Figure 9 shows 

the predicted risk corresponding to the predictions shown in Figure 5. This figure shows 

the predicted risk for all scenarios on the same plot, allowing for a simple comparison of 

the predicted risk for all scenarios. When reviewing Figure 9, recall that both worst-case 

scenario models appeared to effectively capture most of the observations with 

insufficient household FRC. Based on this, we should obtain the tapstand FRC target 

from one of the two worst-case scenario lines. We recommend always selecting the 
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most conservative FRC target, which in this case would correspond to PM collection. 

However, from Figure 8 we know that AM collection was more common, which could be 

a justification for using the AM collection risk targets.  

From Figure 9, we can identify that the models predict little or no risk of household FRC 

below 0.2 g/L when the tapstand FRC is around 1 to 1.10 mg/L. For further accuracy, 

we can review the risk tables, Tables 1 and 2 below. Table 1 provides the average case 

targets table and Table 2 provides the worst-case risk predictions. Based on Figure 5 

and 9, Table 2 should be used as, for this site, the worst case scenario targets were 

more conservative. The SWOT-ANN always provides both the average and worst case 

target tables, so it is important to identify the correct target table. From Table 2, we 

confirm the PM collection scenario is more conservative, as at each tapstand FRC, the 

predicted risk in the “PM Collection” column is greater than the predicted risk in the “AM 

Collection” column. From this table we also see that to obtain 0.000 predicted risk of 

insufficient household FRC, a tapstand FRC concentration of 1.10 mg/L is required. 

Note that this 0.0% predicted risk does not mean that there is no risk of having 

insufficient household FRC. There is always some risk of household FRC being below 

0.2 mg/L, a predicted risk of 0 simply means that the model forecasts a very low 

probability (less that 0.001, or 0.1%) of household FRC below 0.2 mg/L. Also, this 

prediction should always be taken in context of the model performance (Section 4.3) as 

well as the actual predictions (shown in Figure 5) as a low predicted risk from a model 

with poor performance or that does not capture observations with low household FRC is 

not necessarily accurate.  

 

Figure 9: Risk predictions corresponding to the predictions from Figure 5 
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Table 1: Average case targets table 

Input 
FRC 
(mg/L) 

Storage 
Duration 
Target 

Water 
Temperature 
(C) 

Electrical 
Conductivity 
(10^-6s/cm) 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - AM 
Collection 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - PM 
Collection 

Predicted Risk 
of Household 
FRC below 0.20 
mg/L - AM 
Collection 

Predicted Risk 
of Household 
FRC below 
0.20 mg/L - PM 
Collection 

0.20 15 28.9 472.0 0.112 0.055 0.910 0.933 

0.25 15 28.9 472.0 0.136 0.077 0.910 0.912 

0.30 15 28.9 472.0 0.160 0.1 0.895 0.910 

0.35 15 28.9 472.0 0.184 0.124 0.735 0.910 

0.40 15 28.9 472.0 0.207 0.147 0.339 0.910 

0.45 15 28.9 472.0 0.231 0.17 0.013 0.904 

0.50 15 28.9 472.0 0.255 0.193 0.000 0.629 

0.55 15 28.9 472.0 0.279 0.216 0.000 0.136 

0.60 15 28.9 472.0 0.303 0.241 0.000 0.000 

0.65 15 28.9 472.0 0.327 0.265 0.000 0.000 

0.70 15 28.9 472.0 0.351 0.289 0.000 0.000 

0.75 15 28.9 472.0 0.375 0.313 0.000 0.000 

0.80 15 28.9 472.0 0.399 0.336 0.000 0.000 

0.85 15 28.9 472.0 0.424 0.359 0.000 0.000 

0.90 15 28.9 472.0 0.449 0.382 0.000 0.000 

0.95 15 28.9 472.0 0.475 0.407 0.000 0.000 

1.00 15 28.9 472.0 0.501 0.432 0.000 0.000 

1.05 15 28.9 472.0 0.526 0.458 0.000 0.000 

1.10 15 28.9 472.0 0.552 0.483 0.000 0.000 

1.15 15 28.9 472.0 0.578 0.51 0.000 0.000 

1.20 15 28.9 472.0 0.604 0.536 0.000 0.000 

1.25 15 28.9 472.0 0.631 0.562 0.000 0.000 

1.30 15 28.9 472.0 0.658 0.589 0.000 0.000 

1.35 15 28.9 472.0 0.685 0.615 0.000 0.000 
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Input 
FRC 
(mg/L) 

Storage 
Duration 
Target 

Water 
Temperature 
(C) 

Electrical 
Conductivity 
(10^-6s/cm) 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - AM 
Collection 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - PM 
Collection 

Predicted Risk 
of Household 
FRC below 0.20 
mg/L - AM 
Collection 

Predicted Risk 
of Household 
FRC below 
0.20 mg/L - PM 
Collection 

1.40 15 28.9 472.0 0.712 0.642 0.000 0.000 

1.45 15 28.9 472.0 0.739 0.669 0.000 0.000 

1.50 15 28.9 472.0 0.766 0.695 0.000 0.000 

1.55 15 28.9 472.0 0.793 0.722 0.000 0.000 

1.60 15 28.9 472.0 0.821 0.749 0.000 0.000 

1.65 15 28.9 472.0 0.848 0.777 0.000 0.000 

1.70 15 28.9 472.0 0.876 0.804 0.000 0.000 

1.75 15 28.9 472.0 0.903 0.831 0.000 0.000 

1.80 15 28.9 472.0 0.931 0.859 0.000 0.000 

1.85 15 28.9 472.0 0.958 0.886 0.000 0.000 

1.90 15 28.9 472.0 0.986 0.914 0.000 0.000 

1.95 15 28.9 472.0 1.014 0.942 0.000 0.000 

2.00 15 28.9 472.0 1.042 0.97 0.000 0.000 
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Table 2: Worst case targets table 

Input 
FRC 
(mg/L) 

Storage 
Duration 
Target 

Water 
Temperature 
(C) 

Electrical 
Conductivity 
(10^-6s/cm) 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - AM 
Collection 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - PM 
Collection 

Predicted Risk 
of Household 
FRC below 0.20 
mg/L - AM 
Collection 

Predicted Risk 
of Household 
FRC below 
0.20 mg/L - PM 
Collection 

0.20 15 27.8 308.0 0.036 -0.026 1.000 1.000 

0.25 15 27.8 308.0 0.058 -0.004 1.000 1.000 

0.30 15 27.8 308.0 0.081 0.018 1.000 1.000 

0.35 15 27.8 308.0 0.103 0.04 1.000 1.000 

0.40 15 27.8 308.0 0.126 0.062 1.000 1.000 

0.45 15 27.8 308.0 0.149 0.084 0.984 1.000 

0.50 15 27.8 308.0 0.171 0.106 0.900 1.000 

0.55 15 27.8 308.0 0.193 0.13 0.617 1.000 

0.60 15 27.8 308.0 0.216 0.153 0.253 0.958 

0.65 15 27.8 308.0 0.24 0.175 0.061 0.815 

0.70 15 27.8 308.0 0.263 0.198 0.026 0.525 

0.75 15 27.8 308.0 0.288 0.221 0.020 0.236 

0.80 15 27.8 308.0 0.312 0.245 0.020 0.095 

0.85 15 27.8 308.0 0.336 0.27 0.012 0.049 

0.90 15 27.8 308.0 0.36 0.293 0.010 0.030 

0.95 15 27.8 308.0 0.385 0.317 0.006 0.030 

1.00 15 27.8 308.0 0.409 0.341 0.000 0.024 

1.05 15 27.8 308.0 0.434 0.366 0.000 0.013 

1.10 15 27.8 308.0 0.459 0.391 0.000 0.000 

1.15 15 27.8 308.0 0.485 0.416 0.000 0.000 

1.20 15 27.8 308.0 0.51 0.441 0.000 0.000 

1.25 15 27.8 308.0 0.536 0.466 0.000 0.000 

1.30 15 27.8 308.0 0.562 0.492 0.000 0.000 

1.35 15 27.8 308.0 0.589 0.518 0.000 0.000 
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Input 
FRC 
(mg/L) 

Storage 
Duration 
Target 

Water 
Temperature 
(C) 

Electrical 
Conductivity 
(10^-6s/cm) 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - AM 
Collection 

Median Predicted 
Household FRC 
Concentration 
(mg/L) - PM 
Collection 

Predicted Risk 
of Household 
FRC below 0.20 
mg/L - AM 
Collection 

Predicted Risk 
of Household 
FRC below 
0.20 mg/L - PM 
Collection 

1.40 15 27.8 308.0 0.615 0.544 0.000 0.000 

1.45 15 27.8 308.0 0.642 0.57 0.000 0.000 

1.50 15 27.8 308.0 0.668 0.596 0.000 0.000 

1.55 15 27.8 308.0 0.694 0.623 0.000 0.000 

1.60 15 27.8 308.0 0.721 0.649 0.000 0.000 

1.65 15 27.8 308.0 0.747 0.676 0.000 0.000 

1.70 15 27.8 308.0 0.773 0.704 0.000 0.000 

1.75 15 27.8 308.0 0.8 0.731 0.000 0.000 

1.80 15 27.8 308.0 0.827 0.758 0.000 0.000 

1.85 15 27.8 308.0 0.854 0.786 0.000 0.000 

1.90 15 27.8 308.0 0.881 0.813 0.000 0.000 

1.95 15 27.8 308.0 0.909 0.841 0.000 0.000 

2.00 15 27.8 308.0 0.936 0.868 0.000 0.000 
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It is also worth noting that the worst-case scenario is derived based on a theoretical 

understanding of the effect of EC and water temperature on FRC decay, and as such 

the worst-case scenario may not always be the most conservative. Figure 10 shows the 

predicted risk for a site where the average case scenario actually leads to more 

conservative targets than the worst case. Thus, it is always crucial to review the 

predicted risk plots before choosing a table from which to obtain an FRC target. 

 

Figure 10: Predicted risk for a site where the worst-case scenario is not the most conservative. 

5.2.4 Output Interpretation Summary 
The SWOT-ANN produces 3 outputs to help obtain an FRC target: 

1. Plot of predictions against point-of-distribution FRC for all scenarios 

2. Histograms input and output variables used  

3. Plot of predicted risk against tapstand FRC (Figures 9 and 10), and output tables 

of the predicted risk of insufficient household FRC (Tables 1 and 2) 

The recommended order for reviewing these outputs is: 

1. Review the plot of predictions against tapstand FRC for the following: 

• Forecast median increases with increasing tapstand FRC 

• Forecast range and forecast 95th percentile range both increase with 

increasing tapstand FRC, and shape is generally appropriate 

• Adequate coverage of observations with household FRC below 0.2 mg/L: 

• If this is not met, you may want to apply a factor of safety to the 

target, obtain a target through visual review of the data, or use the 

physical modelling target. 
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2. Review input and output variable histograms to identify the water quality 

variables used and to identify any large dominance of one collection period over 

the other. 

3. Use the predicted risk figures to identify the appropriate table and column from 

which to obtain the FRC target: 

• This figure should at the very least identify the most conservative scenario 

(between average and worst case, if applicable). 

• To select between AM and PM collection, either use the most 

conservative target (recommended) or use the dominant scenario as 

identified from the histograms above (only recommended if one scenario 

is much more prevalent than the other. 

• Obtain the tapstand FRC target by reading off the lowest tapstand FRC 

concentration that produces a predicted risk of 0.000, or another value if 

you have a specific risk target. 

6 Conclusion 
This report summarizes the analytics included in version 2 of the SWOT-ANN, providing 

both the theoretical framework for the analytics as well as providing support for 

interpreting the SWOT-ANN outputs for the purposes of obtaining a risk-based FRC 

target. This version of the SWOT-ANN includes many features targeted to produce 

effective, evidence-based FRC targets, while addressing the complex challenges 

associated with modelling FRC during the post-distribution period. The SWOT-ANN 

code is available on the SWOT project GitHub page at: https://github.com/safeh2o/swot-

python-analysis. 
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Glossary of Functions and Explanations 
The SWOT Version 2 code is available on GitHub at https://github.com/safeh2o/swot-python-analysis.. This Glossary provides an 

overview of the functions used in the NNetwork.py code (which is the main analytical code for the SWOT-ANN) and provides a brief 

summary of each function. Note, the code is built using object-oriented programming that builds the “NNetwork” class, and thus the 

“self” input is included in all of the functions in the code. Note the NNetwork.py code is called from the run_swot_script.py code which 

handles the running of the actual SWOT analytics. 

Function Inputs Description Outputs 
import_data_from_csv filename (input 

file name) 
Called from “run_swot_script”, imports 
the data from the uploaded file and 
checks for all preprocessing rules. This 
function uses the tapstand and 
household timestamps to calculate the 
elapsed time of storage and time of 
collection. This function also checks the 
number of missing measurements to 
define the input variable selection 
process  

Predictor and target 
DataFrames, count of 
dropped rows and other 
rule checks 

valid_dates series Called from ”import_data_from_csv”. 
Data pre-processing step: removes 
observations with invalid dates (blank 
timestamp information, unknown 
formatting, dates that cannot be 
coverted to datetimes) 

List of indices to remove 
from the input file 

execute_rule description, 
column, 
matches 

Called from ”import_data_from_csv”, 
executes a data preprocessing rule 

Removes observations 
from the input file based 
on a given rule 

set_up_model  Called from “run_swot_script”, defines 
the architecture of the Keras model and 
compiles the model 

Compiled Keras MLP 
model 

train_SWOT_network directory 
(directory to 
store saved 
models) 

Called from “run_swot_script”, defines 
the training parameters for the overall 
SWOT neural network, saves the 
trained networks. Note, this function 
does not train the neural network but 
calls the “train_network” function 

200 saved ensemble 
models 

https://github.com/safeh2o/swot-python-analysis


Function Inputs Description Outputs 
train_network x, t, directory Called from “train_SWOT_network”, 

trains the individual neural network 
1 trained neural network 

calibration_performance_evaluation filename Called from “train_SWOT_network”, 
calculates the performance of the raw 
ensemble. Performance metrics 
calculated: Percent Capture (overall 
and for observations with household 
FRC below 0.2), CI reliability score 
(overall and for observations with 
household FRC below 0.2), delta score 
(overall and for observations with 
household FRC below 0.2), CRPS, 
CRPS reliability term. 
 
Also produces diagnostic figures: plot of 
observations vs forecast range, CI 
reliability diagram, rank histogram 

Performance metrics  
Performance Diagnostic 
Figures 

post_process_cal  Called from “run_swot_script”, 
compares the performance of the raw 
and post-processed ensembles to 
determine the best-performing method. 
This is determined in the 
post_process_check variable which 
compares the sum of skill scores for the 
percent capture, percent capture of 
observations with household FRC 
below 0.2 mg/L, CI reliability, CI 
reliability for observations with 
household FRC below 0.2 mg/L, and 
the CRPS. If the sum of skill scores is 
positive, then post-processing is used, if 
negative, post-processing is not 

post_process_check: if 
True, post-processing is 
used to generate targets, 
if False, post-processing 
is not used 

get_bw  Called from “post_process_cal”, 
calculates the kernel bandwidth used 
for post-processing 

Bandwidth 



Function Inputs Description Outputs 
post_process_performance_cal Bandwidth Called from “post_process_cal”, 

calculates the post-processed 
ensemble performance for the percent 
capture, percent capture of 
observations with household FRC 
below 0.2 mg/L, CI reliability, CI 
reliability for observations with 
household FRC below 0.2 mg/L, and 
the CRPS. 

Post-processed 
ensemble performance 
metrics 

set_inputs_for_table storage_target Called from “run_swot_script”, uses the 
storage target provided to generate the 
tables used for forecasting the risk-
based FRC targets. Note that four 
tables are produced for different 
possible scenario analyses 

Tables of inputs for 
generating risk-based 
FRC targets 

import_pretrained_model directory Called from “run_swot_script”, loads the 
networks saved in the 
“train_SWOT_network” function 

Loaded networks 

predict  Called from “run_swot_script”, 
generates ensemble forecasts of the 
household FRC for the inputs defined in 
the “set_inputs_for_table”. Note, if post-
processing is being used, the forecasts 
are also post-processed. This function 
also calculates the risk of having 
household FRC below 0.2 mg/L 

Raw ensemble forecasts, 
post-processed ensemble 
forecasts, risk of low 
household FRC for each 
scenario 

post_process_predictions results_table_frc Called from “predict” if the 
post_process_check is set to True. 
Post-processes the raw ensemble 
forecasts used to generate the risk-
based FRC targets 

Post-processed 
ensemble forecast 

dsplay_results  Called from “run_swot_script”, prints the 
results of the predict function 

Printed results 

export_results_to_csv results_file Called from “run_swot_script”, exports 
the results for each scenario to a csv 
file 

Saved .csv results file for 
each scenario 



Function Inputs Description Outputs 
generate_html_report report file, 

storage_target 
Called from “run_swot_script”, compiles 
an html report of the key results: 
Prediction figures 
Risk figures 
Input and output variable histograms 
Risk tables 
Diagnostic figures 
Table of skipped rows 

HTML report 

prepare_table_for_html_report storage_target Called from “generate_html_report”, 
prepares a table of all of the inputs used 
to generate the risk-based FRC targets 
and the predicted risk for each scenario 

Tables of predicted risk 

results_visualization filename, 
storage_target 

Called from “generate_html_report” 
generates figures associated with risk-
based FRC targets:  
Prediction figures 
Risk figures 
Input and output variable histograms 

Prediction figures 
Risk figures 
Input and output variable 
histograms 

skipped_rows_html  Called from “generate_html_report”, 
prepares a table of all rows that were 
dropped during data preprocessing 

Table of skipped rows 

 



Appendix A – Including Time in the ANN Model 

A.1 Introduction 
The SWOT ANN analytics uses ensembles of artificial neural networks (ANNs) to 

forecast point-of-consumption FRC in refugee and IDP settlements. The ANN base 

learners in the ensemble are a type of data driven model, meaning that they do not 

include any assumptions about the physical behaviour which they are modelling, and 

instead they learn from the underlying data. This is very useful for modelling FRC in the 

post-distribution period where the physical processes occurring are hard to quantify, 

however, this also means that ANN models do not always reflect the physical behaviour 

underlying the models. In particular, despite FRC decay being a time dependent 

reaction, elapsed time does not tend to be a strong predictor in ANN models. This was 

demonstrated in the development of the initial SWOT-ANN version 1 analytics, and was 

recently documented by De Santi et al. (2021) who showed that time was not a strong 

predictor of post-distribution FRC when using ensembles of ANNs, and confirmed this 

using partial correlation which showed that when controlling for the other variables 

included in the study, there was little correlation between elapsed time and the point-of-

distribution FRC concentration. 

The findings pose several problems. First, as mentioned above, FRC decay is time 

dependent and as such elapsed time should have some influence on the model, and the 

lack of influence of elapsed time may reduce confidence in the models. Second, having 

time as a predictor is important as it allows the SWOT to incorporate storage time as a 

variable, but these targets may be compromised if time is a weak predictor as we may 

end up with unconventional behaviour. Third, the elapsed time is already being 

collected, so discarding elapsed time as a variable means that we lose the value of the 

data being collected. 

The limited usefulness of elapsed time in the ANN ensemble models may be due to 

clustering of elapsed time values around a few storage times, leading to confounding 

with behavioural and environmental factors (De Santi et al., 2021). Longer storage times 

have been hypothesized to reflect overnight storage when temperatures are cooler and 

where there is less opportunity for interaction with the water, whereas shorter storage 

times may reflect daytime storage when the ambient temperatures are higher and there 

is more potential for interaction with the water (De Santi et al., 2021). This Appendix 

presents an investigation into the interaction of time with potential confounding variables 

– specifically elapsed time and storage duration. We begin with an exploratory data 

analysis to visually identify trends between elapsed time, storage duration, and time of 

collection and continue with a comparison of model performance for these scenarios. 

The primary objectives of this study are to understand which variables are confounding 

the impact of storage time, and then select a modelling approach for the SWOT-ANN 

that incorporates time-related variables to produce the best performance. 



A.2 Methods 

A.2.1 Sites and data collection 
The data used in this analysis included both the datasets collected from the sites used 

for the initial development of the SWOT (South Sudan, Jordan (2014), Jordan (2015), 

Rwanda), as well as data collected through SWOT field trials (Bangladesh, Tanzania, 

Nigeria). 

A.2.2 Ethics 
The initial field work in South Sudan received exemption from full ethics review by the 

Medical Director of Médecins sans Frontières (MSF) (Operational Centre Amsterdam) 

as data collected was routine for the on-going water supply intervention at the study 

site. For subsequent field studies in Jordan and Rwanda, ethics approval was obtained 

from the Committee for Protection of Human Subjects (CPHS) of the Institutional 

Review Board at the University of California, Berkeley (CPHS Protocol Number: 2014-

05-6326). Informed consent was provided throughout all data collection. 

The studies in Bangladesh, Tanzania, and Nigeria received approval from Human 

Participants Review Committee, Office of Research Ethics at York University (Certificate 

#: 2019-186), The study in Bangladesh also received approval from the MSF Ethical 

Review Board (ID #: 1932), and the Centre for Injury Prevention and Research 

Bangladesh (Memo #: CIPRB/Admin/2019/168). 

A.2.3 Exploratory Data Analysis 
This investigation began with an exploratory analysis to visualize the distribution of the 

time-based-variables on site (storage duration and hour of collection) for the seven 

datasets included in this analysis to identify any key patterns between these two 

explanatory variables that may aid in understanding potential confounding with elapsed 

time.  

A.2.4 Modelling Approach 
After the exploratory analysis, we trained and tested ANN ensembles with different 

approaches to incorporating time into the SWOT-ANN analytics and evaluated the 

resulting performance. To perform this evaluation, we began with a base model without 

any time-based-variables and then developed a series of experiments to incorporate 

time-based-variables. 

A.2.4.1 Base Model Set-Up 

The baseline models did not include any time-based-variables, though two input 

variable combinations were considered. The first (IV1) only included point-of-distribution 

FRC, and the second (IV2) included tapstand FRC, EC, and water temperature (the 

input variable combination used by the SWOT version 1). The base models used in this 

investigation were an ensemble of 200 multi-layer perceptrons (MLPs) with a single 

hidden layer as this is the same ensemble architecture used on the SWOT. The hidden 

layer used a hyperbolic tangent activation function, and the output layer used a linear 



activation function. The hidden layer size was selected based on the site and input 

variable combinations, with the hidden layer size for the IV1 models ranging from 4 to 

16 hidden nodes and the hidden layer size for the IV2 models ranging from 8 to 16 

hidden nodes. The overall dataset was split into three subsets. 25% of the overall 

dataset was used for testing, and the remaining 75% of the data was used for 

calibration. This calibration dataset was subdivided for each base learner with 33% of 

the calibration set (25% of the overall dataset) used for training and the remaining 66% 

of the calibration dataset (50% of the overall dataset) used for validating the training 

process. This validation set was used to trigger an early stopping procedure whereby if 

performance stopped improving on the validation set during training, training would be 

halted. This early stopping procedure is used to prevent overfitting of the models during 

training (i.e., it prevents each base learner becoming overly specific to the training data 

without being adequately generalizable). 

A.2.4.2 Experiments 

Nine experiments were proposed to incorporate time-based variables into the baseline 

model described above. Three time-based-variables were considered: elapsed time as 

a continuous variable, as used in De Santi et al. (2021); the storage duration as a binary 

variable representing long and short duration storage (with the cut-off being 12-hour 

storage); and the time of collection as a binary variable representing AM or PM 

collection. The two binary variables were intended to correspond to the clustering 

observed in De Santi et al. (2021) by addressing two potential confounding cases. The 

binary storage variable simplifies the model into long or short storage, which, as 

described above may account for differences between daytime and overnight storage. 

The time of collection variable addresses whether the storage period begins in the 

morning, thus including the period of daytime storage; or in the evening, representing 

less potential for storage during the hottest and most active times of day. Note that we 

took two approaches to using binary variables: we could either add them into the model 

as additional variables or we could split the model based on these binary variables to 

create two separate models. The nine approaches we considered are listed below: 

1. Include elapsed time only as an input variable 

2. Include the time of collection only as an input variable 

3. Include the storage duration only as an input variable 

4. Include elapsed time and time of collection as input variables 

5. Include elapsed time and storage duration as input variables 

6. Split the model based on the storage duration 

7. Split the model based on the storage duration and add elapsed time as an input 

variable 

8. Split the model based on time of collection 

9. Split the model based on time of collection and add elapsed time as an input 

variable 



A.2.5 Performance Metrics 
The quality of the probabilistic forecasts was evaluated using the same performance 

metrics listed in Section 4.3 above: 

• Percent capture (for the overall dataset and for observations where the 

household FRC is below 0.2 mg/L) 

o Described in Section 4.3.1: the percent capture describes the percentage 

of observations that fall within the forecast range and thus evaluates if the 

models are underdispersed 

• CI reliability score (for the overall dataset and for observations where the 

household FRC is below 0.2 mg/L) 

o Described in Section 4.3.2: the CI reliability score measures the 

percentage of observations captured within each ensemble CI and 

compares them to the ideal percent capture, which would be a capture 

equal to the CI level. This evaluates the ensemble forecast reliability (i.e., 

the similarity between the observed and forecasted distributions) 

• The rank histogram 𝛿-score (for the overall dataset and for observations where 

the household FRC is below 0.2 mg/L) 

o Described in Section 4.3.3: the 𝛿-score evaluates the uniformity or flatness 

of the rank histogram, providing an indication of forecast reliability as a flat 

rank histogram indicates that an observation is equally likely to appear 

anywhere within the ensemble forecast range (Candille and Talagrand, 

2005; Hamill, 2001). 

• The CRPS and CRPS reliability term 

o Described in Section 4.3.4: The CRPS is a probabilistic equivalent of 

mean absolute error (Ferro, 2014; Hersbach, 2000) which evaluates the 

forecast sharpness, reliability, and uncertainty. The CRPS reliability term 

is based on a decomposition of the CRPS for ensemble forecasts and 

directly evaluates the ensemble reliability (Hersbach, 2000). 

A.2.5.1 Evaluation Methods 

To compare different approaches for incorporating time-based-variables equally across 

all sites and input variable combinations, we normalized the score for each experiment 

by taking the Skill Score (Equation A-1). This converts each numerical score to a 

normalized score with the range of 1 to negative infinity, with a positive skill score 

indicating that performance has improved over a reference baseline score, and a 

negative score indicating a performance decrease. For percent capture and the 𝛿-score, 

the ideal score is 1, and for the CI reliability score and CRPS and CRPS reliability term, 

the ideal score is 0. 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖𝑑𝑒𝑎𝑙 𝑠𝑐𝑜𝑟𝑒−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (A-1) 

Since the skill score is a normalized indicator of improvement over a reference, we set 

the baseline score in this case to be the score obtained by the baseline model using no 



time-based-variables. Thus, each site and variable combination (IV1 vs IV2) has its own 

baseline score. 

When comparing the skill scores across all sites and variable combinations, we used 

two short hand metrics to simplify the comparison. First, we took the sum of the skill 

scores for each site and variable combination to derive a Net Improvement Score for 

each site and variable combination which indicates if an experiment led to an overall 

improvement or decrease in the ensemble forecasting performance. We then 

determined the overall magnitude of improvement for a given experiment by taking the 

sum of all of the net improvement scores for that experiment. The overall magnitude of 

improvement for an experiment is effective at identifying if the experiment provides large 

performance improvements, but it may be dominated by a few good performances. 

Thus we balanced the magnitude of improvement against the consistency of 

improvement, which we calculated as the count, for each experiment, of all site and 

variable combinations with positive Net Improvement Scores. This consistency metric 

provides a useful indication if an experiment typically improves performance, without 

giving any indication as to whether or the improvements in performance are substantial. 

A.3 Results and Analysis 

A.3.1 Exploratory Data Analysis 
Figure A-1 shows histograms of the storage duration for each site, disaggregated by the 

time of collection (morning or afternoon). This figure shows that each site tends to have 

a clear trend of longer or shorter storage based on the time of collection, though this 

trend may vary from site to site. For example, in South Sudan, afternoon collection 

primarily corresponds to shorter duration storage than morning collection, though in 

Bangladesh, the opposite appears to be true. Additionally, it is worth noting that both 

morning and afternoon collection were practiced at all sites. 

Figure A-2 shows histograms of the time of collection for each site, disaggregated by 

the storage duration (shorter or longer than 12 hours). As with Figure A-1, we see some 

patterns emerging at each site relating the time of collection with the storage duration. 

In particular, early collection periods may correspond to either long or short storage 

durations, however, the later in the day water is collected, the more frequently that 

water is stored over 12 hours. This shows that the time-of-collection behaviour is clearly 

interrelated with the storage behaviour of the water. Unlike in Figure A-1 though, both 

long and short storage are not reflected at all sites, with only 3 observations in Nigeria 

having storage over 12 hours and no observations in South Sudan having storage over 

12 hours. This is critical as these findings make experiments 6 and 7 non-viable 

because there is insufficient data to develop a separate long-duration storage model for 

these sites. Thus, these experiments were removed from consideration. 



 

Figure A-1: Storage duration disaggregated by time of collection (morning vs afternoon) 



 

Figure A-2: time of collection disaggregated by storage duration (longer or shorter than 12 hours) 



A.3.2 Ensemble Performance 
Figure A-3 shows the Net Improvement Score for each experiment at each site and 

variable combination. The different coloured bars in Figure A-3 show the different site 

and variable combinations with the Net Improvement Scores grouped by experiment. 

From this figure we see that the inclusion of time-based-variables always resulted in a 

net decrease in performance for the South Sudan IV2 model, though this model has 

been shown to perform anomalously due to the combination of data from many subsites 

into one model (De Santi et al., 2021). However, this highlights another important trend 

in Figure A-3: the change in performance with the inclusion of time-based-variables is 

highly site specific, and the impact of each experiment is not consistent across all sites. 

However, when we consider the consistency of improvement (shown in Figure A-4) we 

see that Experiments 4, 5, and 9 all produce the most consistent improvements in 

model performance, each producing a net improvement in 13 out of a possible 14 

cases. These experiments are unique in that they are all experiments that include both 

one of the categorical variables (storage duration or time of collection) as well as the 

continuous elapsed time variable. Experiments 4 and 5 are the experiments that directly 

include these as variables, and Experiment 9 splits the model based on collection time 

and includes elapsed time as a variable. These three experiments also produce the 

largest magnitude of improvement (shown in Figure A-4). The largest magnitude of 

performance improvement was observed in Experiment 4, with Experiment 9 producing 

the next largest magnitude of improvement.  

From these results, we can clearly see that the elapsed time is an important predictor as 

all of the best models included elapsed time. Furthermore, additional variables to 

explain the confounding of elapsed time with behavioural and/or environmental 

parameters are required as the model with elapsed time alone did not perform as well 

as those models that included storage duration or time of collection. This indicates that 

the neural network model is able to find patterns relating elapsed time and household 

FRC within the storage duration or time of collection categories However, while 

including either storage duration or time of collection yielded improvement over elapsed 

time alone, the models using time of collection likely performed better because the time 

of collection provides a different type of information not included in the storage duration. 

Storage duration is derived from the elapsed time, thus there is some duplication of 

information between these variables whereas including time of collection allows the 

ANN models to find interactions between two variables which are more different from 

each other. Additionally, we found that when handling time of collection either as a 

binary variable or a model splitting criterion, we found that including it as a variable 

yielded more performance improvements, indicating that the model derives benefit from 

quantifying the interactions between these two variables. 



 

Figure A-3: Net Improvement Score for each site and variable combination, grouped by experiment 
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Figure A-4: magnitude and consistency of Net Improvement Scores for each experiment 
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A.4 Conclusion 
Based on the findings presented above, we recommend that the SWOT-ANN analytics 

include both elapsed time and the time of collection as time-based-variables as this 

yields the best model performance, and both variables can be derived from the 

timestamps included in the tapstand and household measurements, and as such will not 

increase the data collection burden. 
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Appendix B – Input Variable Selection for the SWOT-ANN 

B.1 Introduction 
The SWOT ANN analytics uses ensembles of artificial neural networks (ANNs) to 

forecast point-of-consumption FRC in refugee and IDP settlements. One of the 

advantages of the ANN based approach is that, unlike process-based models, they can 

directly accept field water quality measurements of explanatory variables when 

modelling post-distribution FRC (Bowden et al., 2006; De Santi et al., 2021; Soyupak et 

al., 2011). However, in an operational context, it is not always possible to collect the 

additional water quality variables used in the SWOT-ANN analytics, specifically 

electrical conductivity (EC) and water temperature. This creates a challenge as the ANN 

base learners cannot accept missing data, so if a measurement is missing, the entire 

row must be discarded, creating a trade-off between the number of variables included in 

the model and the number of observations available to train the model. Furthermore, as 

described in Section 5.1, these additional water quality variables are used for scenario 

analysis, so if too many variables are removed, then the scenario analysis for different 

decay scenarios cannot be performed. The SWOT-ANN version 1 analytics filled 

missing water quality measurements using synthetic measurements, specifically the 

average conductivity and water temperature, however, this creates two challenges. 

First, in cases where a large amount of data is missing, there may be more synthetic 

measurements than real measurements. Second, these additional water quality 

variables have a strong impact on post-distribution FRC, and replacing them with the 

mean value leads to the model learning on wrong information and actually reduces the 

model performance. Thus, for the SWOT-ANN version 2 analytics we no longer replace 

missing values with synthetic data, but we must now identify the appropriate trade-off 

between removing observations with missing measurement and removing entire 

variables. This investigation compares the probabilistic performance of models trained 

with varying amounts of observations removed as well as varying input variable sets to 

directly evaluate this trade-off. 

B.2 Methods 

B.2.1 Sites and data collection 
The data used in this analysis included both the datasets collected from the sites used 

for the initial development of the SWOT (South Sudan, Jordan (2014), Jordan (2015), 

Rwanda), as well as data collected through SWOT field trials (Bangladesh, Tanzania, 

Nigeria). 

B.2.2 Ethics 
The initial field work in South Sudan received exemption from full ethics review by the 

Medical Director of Médecins sans Frontières (MSF) (Operational Centre Amsterdam) 

as data collected was routine for the on-going water supply intervention at the study 

site. For subsequent field studies in Jordan and Rwanda, ethics approval was obtained 



from the Committee for Protection of Human Subjects (CPHS) of the Institutional 

Review Board at the University of California, Berkeley (CPHS Protocol Number: 2014-

05-6326). Informed consent was provided throughout all data collection. 

The studies in Bangladesh, Tanzania, and Nigeria received approval from Human 

Participants Review Committee, Office of Research Ethics at York University (Certificate 

#: 2019-186), The study in Bangladesh also received approval from the MSF Ethical 

Review Board (ID #: 1932), and the Centre for Injury Prevention and Research 

Bangladesh (Memo #: CIPRB/Admin/2019/168). 

B.2.3 Analytical Approach 
To analyze the trade-off between including larger input variable sets with fewer 

observations and smaller input variable sets with more observations we considered four 

possible input variable combinations. The first, IV1, includes only tapstand FRC, the 

elapsed time of storage, and the time of collection. This is the smallest feasible input 

variable set as all of these variables include only the two required measurements for the 

SWOT-ANN model: tapstand FRC and timestamp data. The second input variable 

combination (IV2) includes all the variables and IV1 and water temperature. For the 

datasets used in this study, water temperature tends to be more regularly collected than 

EC, and as such the IV2 input variable combination will typically have the second most 

observations. The third input variable combination (IV3) includes the IV1 variables and 

EC without water temperature. EC tends to be less regularly collected than water 

temperature, but past research suggests this may be a more informative predictor of 

household FRC than water temperature (De Santi et al., 2021). Finally, the fourth input 

variable combination (IV4) includes all potential variables: tapstand FRC, elapsed time, 

time of collection, water temperature, and EC. This final input variable set includes the 

most potential input variables, however, will likely have the fewest available 

observations. We used these four input variable approaches instead of a more 

systematic approach because each site had very different numbers of observations 

available for each input variable combination, giving a balanced representation of the 

possible outcomes. 

The performance using each of these four input variables was recorded for each site, 

and then compared to the following potential explanatory factors: 

• Number of observations dropped due to missing measurements for each input 

variable combination (using IV1 as a reference) 

• Percentage of observations dropped due to missing measurements 

• Standard deviation of the household FRC for each input variable combination 

• Absolute change in the standard deviation as observations dropped due to 

missing measurements (using IV1 as a reference) 

• Percent change in the standard deviation as observations dropped due to 

missing measurements 



B.2.4 Base Model Set-up 
The model architecture was kept similar to the approach taken in the previous appendix. 

The base models used in this investigation were an ensemble of 200 multi-layer 

perceptrons (MLPs) with a single hidden layer as this is the same ensemble architecture 

used on the SWOT. The hidden layer used a hyperbolic tangent activation function, and 

the output layer used a linear activation function. The hidden layer size was selected 

based on the site and input variable combinations, with the hidden layer size for the IV1 

models ranging from 4 to 16 hidden nodes and the hidden layer size for the IV2 through 

IV4 models ranging from 8 to 16 hidden nodes. The overall dataset was split into three 

subsets. 25% of the overall dataset was used for testing, and the remaining 75% of the 

data was used for calibration. This calibration dataset was subdivided for each base 

learner with 33% of the calibration set (25% of the overall dataset) used for training and 

the remaining 66% of the calibration dataset (50% of the overall dataset) used for 

validating the training process. This validation set was used to trigger an early stopping 

procedure whereby if performance stopped improving on the validation set during 

training, training would be halted. This early stopping procedure is used to prevent 

overfitting of the models during training (i.e., it prevents each base learner becoming 

overly specific to the training data without being adequately generalizable). 

B.2.5 Performance Metrics 
The quality of the probabilistic forecasts was evaluated using the same performance 

metrics listed in Section 4.3 above: 

• Percent capture (for the overall dataset and for observations where the 

household FRC is below 0.2 mg/L) 

o Described in Section 4.3.1: the percent capture describes the percentage 

of observations that fall within the forecast range and thus evaluates if the 

models are underdispersed 

• CI reliability score (for the overall dataset and for observations where the 

household FRC is below 0.2 mg/L) 

o Described in Section 4.3.2: the CI reliability score measures the 

percentage of observations captured within each ensemble CI and 

compares them to the ideal percent capture, which would be a capture 

equal to the CI level. This evaluates the ensemble forecast reliability (i.e., 

the similarity between the observed and forecasted distributions) 

• The rank histogram 𝛿-score (for the overall dataset and for observations where 

the household FRC is below 0.2 mg/L) 

o Described in Section 4.3.3: the 𝛿-score evaluates the uniformity or flatness 

of the rank histogram, providing an indication of forecast reliability as a flat 

rank histogram indicates that an observation is equally likely to appear 

anywhere within the ensemble forecast range (Candille and Talagrand, 

2005; Hamill, 2001). 

• The CRPS and CRPS reliability term 



o Described in Section 4.3.4: The CRPS is a probabilistic equivalent of 

mean absolute error (Ferro, 2014; Hersbach, 2000) which evaluates the 

forecast sharpness, reliability, and uncertainty. The CRPS reliability term 

is based on a decomposition of the CRPS for ensemble forecasts and 

directly evaluates the ensemble reliability (Hersbach, 2000). 

To compare the impact of dropping observations to add variables, we normalized the 

score for the IV2, IV3, and IV4 input variable combinations by taking the Skill Score 

(Equation B-1). This converts each numerical score to a normalized score with the 

range of 1 to negative infinity. A positive skill score indicating that performance has 

improved over a reference baseline score, and a negative score indicating a 

performance decrease. For percent capture and the 𝛿-score, the ideal score is 1, and 

for the CI reliability score and CRPS and CRPS reliability term, the ideal score is 0. 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖𝑑𝑒𝑎𝑙 𝑠𝑐𝑜𝑟𝑒−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (A-1) 

Since the skill score is a normalized indicator of improvement over a reference, we set 

the baseline score in this case to be the score obtained by the IV1 model and thus the 

skill score for each input variable combination indicates the improvement or 

deterioration in performance resulting from the addition of new input variables and the 

subsequent loss of observations with missing measurements. We took the sum of the 

skill scores for each metric for each site and variable combination to derive a Net 

Improvement Score which indicates the total improvement (or deterioration) of 

performance relative to the baseline for the IV2, IV3, and IV4 input variable 

combinations. 

B.3 Results 
Table B-1 summarizes, for each site and input variable combination, the total number of 

observations available, the standard deviation, and the net improvement score relative 

to the IV1 models. From this table we see that only at two sites were negative net 

improvement scores observed (Bangladesh and South Sudan). At all other sites, 

regardless of the number of observations removed, the net improvement scores were 

positive, indicating that removing observations to obtain a larger input variable set, in all 

but two cases, improved performance. It is also worth noting that in 4 out of 7 sites, the 

IV4 input variable set produced the best performance. In Bangladesh, the best 

performance was obtained by the IV1 input variable combination, in Jordan (2014) the 

best performance was obtained by the IV4 input variable combination, and in South 

Sudan the best performance was obtained by the IV2 input variable combination. 

Furthermore, even at Jordan (2014) the decrease in performance from IV3 to IV4 is not 

substantial.  



Table 1: Summary of net improvement for each input variable combination for each site 

Site Input Variable 
Combination 

Total 
Observations 

Standard 
Deviation of 
HH FRC 

Net 
Improvement 
Score 

Bangladesh IV1 2130 0.28 - 

IV2 1964 0.29 -0.056251484 

IV3 974 0.30 -0.655242458 

IV4 974 0.30 -0.498693426 

Jordan (2014) IV1 106 0.33 - 

IV2 106 0.33 0.105118514 

IV3 103 0.32 1.256280783 

IV4 103 0.32 0.919813512 

Jordan (2015) IV1 87 0.15 - 

IV2 87 0.15 0.775603178 

IV3 78 0.15 1.56719527 

IV4 78 0.15 1.813876966 

Nigeria IV1 216 0.11 - 

IV2 216 0.11 0.282824828 

IV3 216 0.11 0.10609025 

IV4 216 0.11 1.276432365 

Rwanda IV1 117 0.23 - 

IV2 94 0.19 1.046354642 

IV3 94 0.19 0.557674369 

IV4 94 0.19 1.027231832 

South Sudan IV1 143 0.37 - 

IV2 142 0.37 0.515658127 

IV3 127 0.36 -0.480462487 

IV4 126 0.36 -3.169370686 

Tanzania IV1 305 0.15 - 

IV2 89 0.20 0.903270956 

IV3 250 0.15 0.857070407 

IV4 89 0.20 1.909282998 

 

To gain a better understanding of why the performance deteriorated with additional 

variables at some sites and improved at others, compared the Net Improvement Score 

to the number of observations removed, the percentage of observations removed, the 

change in standard deviation, and the percentage change in standard deviation. These 

comparisons are shown in Figure B-1. From this figure we do not observe a discernible 

trend in the change in performance with any of these factors. It is also worth noting that 

the sites that had the largest percentage of observations removed and the largest 

percentage changes in standard deviation of household FRC between input variable 



combinations (Tanzania) had one of the highest net improvement scores (1.9). In 

consideration of these finding it does not appear that there is a clear point where it 

substantially improves model performance to remove an input variable to gain more 

training observations. Thus, we recommend that whenever possible, the largest 

possible input variable combination be used, as the IV4 input variable combination was 

most commonly the best performing alternative. 

 

Figure 1: Comparison of Net Improvement Score to potential explanatory factors in the dataset 

B.4 Conclusion 
As stated above, there does not appear to be a clear point where removing an input 

variable to gain additional training observations improves ensemble forecasting 

performance, even when tested for a variety of datasets. This highlights the usefulness 

of additional water quality variables for explaining post-distribution FRC decay. Thus, 



we recommend that whenever possible the maximum possible number of input 

variables be used. For the SWOT-ANN version 2, this means that we recommend that if 

at least 10% observations have a measurement for a variable, that this variable be 

included. This 10% threshold was selected to allow for cases where there may be data 

entry issues, transition between data collection practices, or other anomalies where a 

very small number of samples have these measurements are included despite these 

variables not being included in routine monitoring  
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Appendix C – Comparison of Bandwidth Selection 

Methods for Post-Processing 

C.1 Introduction 
The SWOT ANN analytics uses ensembles of artificial neural networks (ANNs) to forecast point-

of-consumption FRC in refugee and IDP settlements. These models account for the high degree 

of uncertainty in post-distribution FRC decay by generating probabilistic forecasts of household 

FRC which the SWOT uses to generated risk-based FRC targets. In order to produce accurate 

risk-based FRC targets, we need the ensemble forecasts to be reliable; that is, the probability 

distribution forecasted by the ensemble model should match the underlying distribution of the 

data. A challenge in achieving this using ensembles of ANNs is that these ensembles tend to be 

underdispersed, meaning that the spread of the predictions is less than the spread of the 

observations (De Santi et al., 2021). A common approach to overcoming ensemble 

underdispersion is to use post-processing methods (Boucher et al., 2015). These methods are 

applied to an ensemble forecast after the fact to improve the forecast reliability. 

De Santi et al. (2021) proposed the use of kernel-dressing for post-processing ensemble 

forecasts of household FRC. Kernel dressing is a common approach to post-processing that 

ensemble forecasts where a kernel function (typically a Gaussian distribution) is fit around the 

prediction of each ensemble member. The ensemble forecast is then generated by taking the 

sum of each members kernel, which produces a non-parametric mixture distribution (Boucher et 

al., 2015). The benefits of kernel dressing for post-processing ensemble forecasts include the 

relatively low computational cost of kernel dressing, the simplicity of the method, and it’s 

benefits specifically for improving underdispersed forecasts. However, a major challenge in 

implementing kernel based post-processing is selecting the kernel bandwidth. This is 

functionally the variance of the Gaussian distribution fit around each ensemble member. The 

selection of an appropriate bandwidth is key to generating reliable ensemble forecasts. The 

previous study by De Santi et al. (2021) which applied kernel post-processing for forecasting 

household FRC using ensembles of ANNs implemented the best member error developed by 

Roulston and Smith (2003). This is a common reference point for kernel post-processing, 

though in the De Santi et al. (2021) study, this approach improved the ensemble forecasts, but 

not enough to alleviate the underdispersion of the forecasts. This appendix provides an 

investigation into alternative bandwidth selection methods for post-processing ensemble 

forecasts. The objective of this investigation is to determine the bandwidth selection method that 

produces the best performance for ensembles of ANNs forecasting household FRC.  

C.2 Methods 

C.2.1 Sites and data collection 
The data used in this analysis included both the datasets collected from the sites used for the 

initial development of the SWOT (South Sudan, Jordan (2014), Jordan (2015), Rwanda), as well 

as data collected through SWOT field trials (Bangladesh, Tanzania, Nigeria). 

C.2.2 Ethics 
The initial field work in South Sudan received exemption from full ethics review by the Medical 

Director of Médecins sans Frontières (MSF) (Operational Centre Amsterdam) as data collected 



was routine for the on-going water supply intervention at the study site. For subsequent field 

studies in Jordan and Rwanda, ethics approval was obtained from the Committee for Protection 

of Human Subjects (CPHS) of the Institutional Review Board at the University of California, 

Berkeley (CPHS Protocol Number: 2014-05-6326). Informed consent was provided throughout 

all data collection. 

The studies in Bangladesh, Tanzania, and Nigeria received approval from Human Participants 

Review Committee, Office of Research Ethics at York University (Certificate #: 2019-186), The 

study in Bangladesh also received approval from the MSF Ethical Review Board (ID #: 1932), 

and the Centre for Injury Prevention and Research Bangladesh (Memo #: 

CIPRB/Admin/2019/168). 

After the exploratory analysis, we trained and tested ANN ensembles with different approaches 

to incorporating time into the SWOT-ANN analytics and evaluated the resulting performance. To 

perform this evaluation, we began with a base model without any time-based-variables and then 

developed a series of experiments to incorporate time-based-variables. 

C.2.3 Modelling Approach 

C.2.3.1 Base Model Set-Up 
Baseline models were developed for two input variable combinations. The first (IV1) included 

tapstand FRC, elapsed time, and the time of collection. The second input variable combination 

(IV2) included all of the same IV1 variables as well as electrical conductivity (EC) and water 

temperature. The base models used in this investigation were an ensemble of 200 multi-layer 

perceptrons (MLPs) with a single hidden layer as this is the same ensemble architecture used 

on the SWOT. The hidden layer used a hyperbolic tangent activation function, and the output 

layer used a linear activation function. The hidden layer size was selected based on the site and 

input variable combinations, with the hidden layer size for the IV1 models ranging from 4 to 16 

hidden nodes and the hidden layer size for the IV2 models ranging from 8 to 16 hidden nodes. 

The overall dataset was split into three subsets. 25% of the overall dataset was used for testing, 

and the remaining 75% of the data was used for calibration. This calibration dataset was 

subdivided for each base learner with 33% of the calibration set (25% of the overall dataset) 

used for training and the remaining 66% of the calibration dataset (50% of the overall dataset) 

used for validating the training process. This validation set was used to trigger an early stopping 

procedure whereby if performance stopped improving on the validation set during training, 

training would be halted. This early stopping procedure is used to prevent overfitting of the 

models during training (i.e., it prevents each base learner becoming overly specific to the 

training data without being adequately generalizable). 

C.2.3.2 Kernel Post Processing 
As described above, the kernel dressing method of ensemble post-processing follows a two-

step process: first a kernel function is fit centred on the base learner prediction for each 

observation, then each member’s kernel is summed together to produce the post-processed pdf 

which is a non-parametric mixture distribution function. We used a Gaussian kernel function in 

keeping with past studies(Boucher et al., 2015, 2011; Bröcker and Smith, 2008; De Santi et al., 

2021; Roulston and Smith, 2003), though the selection of the specific kernel function is not 

critical (Boucher et al., 2015). The key to this process is the selection of an appropriate 

bandwidth. Following the example of Boucher et al. (2015), we considered three different 

bandwidths. 



The first method we considered was the best member error approach developed by Roulston 

and Smith (2003). This approach uses the ensemble to generate a forecast for every 

observation in the calibration dataset. Then, for each observation, the best member (the 

member with the smallest error from the observation) is identified, and this member’s error is 

taken as the best member error. The kernel bandwidth is then taken as the variance of all best 

member errors. This approach is both intuitive and simple to calculate, however, past studies 

have shown that it is not effective for reproducing the spread of the observed data (Wang and 

Bishop, 2005). The bandwidth for the Wang and Bishop method is calculated using Equation C-

1. 

𝜎𝜅𝑊𝐵
2 = (𝑥𝑖 − 𝑦𝑖)2 − (1 +

1

𝑁
) ∗ 𝑠𝑥𝑖

2  (C-1) 

Where: 

• 𝜎𝜅𝑊𝐵
2  is the kernel bandwidth estimated using the Wang and Bishop (2005) method. 

• 𝑥𝑖 is the mean of the raw ensemble forecast of the 𝑖𝑡ℎ observation of the calibration 

dataset. 

• (𝑥𝑖 − 𝑦𝑖)2 is the mean error between the forecast mean of the 𝑖𝑡ℎ observation in the 

calibration dataset and the measured value of the 𝑖𝑡ℎ observations over all 𝑖 

observations. 

• 𝑠𝑥𝑖
2  is the mean variance of the ensemble forecasts. 

• 𝑁 is the number of observations in the calibration dataset. 

The third method considered in this investigation is the method developed by Fortin et al. 

(2006). This is method is also derived from the Roulston and Smith (2003) method. In this 

method, after forecasting on the calibration dataset, each ensemble forecast is sorted by 

prediction from low to high and the rank of the best member is determined as well as the best 

member error. After this is repeated for each calibration observation, a unique bandwidth is 

selected for each ensemble rank based on the variance of the best member errors for every 

time the best member error was in that rank. Furthermore, when summing the kernels to form 

the ensemble forecast, the sum is weighted by the probability of each rank having a best 

member (Fortin et al., 2006). 

C.2.4 Performance Metrics 
The quality of the probabilistic forecasts was evaluated using the same performance metrics 

listed in Section 4.3 above. Note that unlike the previous two appendices, the rank histogram 𝛿-

score and the CRPS reliability term are not included as the calculation of those metrics requires 

discrete ensemble member predictions and not a continuous forecast (which is obtained from 

the summation of the kernels). 

• Percent capture (for the overall dataset and for observations where the household FRC 

is below 0.2 mg/L) 

o Described in Section 4.3.1: the percent capture describes the percentage of 

observations that fall within the forecast range and thus evaluates if the models 

are underdispersed 

• CI reliability score (for the overall dataset and for observations where the household 

FRC is below 0.2 mg/L) 



o Described in Section 4.3.2: the CI reliability score measures the percentage of 

observations captured within each ensemble CI and compares them to the ideal 

percent capture, which would be a capture equal to the CI level. This evaluates 

the ensemble forecast reliability (i.e., the similarity between the observed and 

forecasted distributions) 

• The CRPS  

o Described in Section 4.3.4: The CRPS is a probabilistic equivalent of mean 

absolute error (Ferro, 2014; Hersbach, 2000) which evaluates the forecast 

sharpness, reliability, and uncertainty.  

 

The scores listed above were normalized by taking the Skill Score (Equation C-2). This converts 

each numerical score to a normalized score with the range of 1 to negative infinity. A positive 

skill score indicating that performance has improved over a reference baseline score, and a 

negative score indicating a performance decrease. For percent capture, the ideal score is 1, and 

for the CI reliability score and CRPS, the ideal score is 0. The baseline score was taken as the 

raw ensemble performance, and as such a positive skill score indicates that the post-processing 

improved the score, and a negative score indicates that the post-processing made the 

performance worse. To simplify the comparison of different methods across a large number of 

sites and variable combinations, we took the sum of the skill scores for all five performance 

metrics for each site and variable combination to combine into an overall Net Improvement 

Score, which indicates the total performance improvement or deterioration at a site. A positive 

net improvement score indicates a performance increase whereas a negative Net Improvement 

Score indicates that overall, the post-processing method made the performance worse. 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖𝑑𝑒𝑎𝑙 𝑠𝑐𝑜𝑟𝑒−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (C-2) 

C.3 Results 
Table C-1 shows the net scores for each post-processing method for each site and variable 

combination. Most notably, this table shows substantial deterioration of performance for at 

almost all sites when using the Fortin et al. (2006) method. This is surprising, as this method 

was found to outperform the other two methods listed by Boucher et al. (2015). When reviewing 

the individual performance metrics for these sites though, it is worth noting that the Fortin et al. 

(2006) method actually substantially improved the percent capture and CI reliability at most 

sites, but it also substantially increased the CRPS. This indicates that for our application, the 

Fortin et al. (2006) method substantially improved the dispersion and reliability of the ensemble 

forecasts, but at the expense of sharpness. We demonstrate an example of this in Figure C-1 

that shows the predictions and observations for the raw ensemble and each post-processed 

ensemble for the Bangladesh IV1 model. From this figure we see that the Fortin method greatly 

increases the spread of the ensemble forecast, leading to much better capture, but it also 

creates substantial overdispersion, leading to substantial overdispersion. Another challenge, not 

capture in Figure C-1, is that often the best member rank was the same for many observations, 

or in some cases, there were too few observations for each ensemble rank to be represented, 

meaning that the Fortin et al. (2006) method does not use the predictions of each ensemble 

member (as the bandwidth cannot be calculated for a rank with no best members). Thus, the 

Fortin et al. (2006) method, while having been demonstrated to be highly effective in past 



studies, is not well suited to the SWOT-ANN where there are often more ensemble members 

than testing observations.  



Table C-1: Comparison of Net Improvement Scores for the three post-processing methods 

Site Input Variable 
Combination 

Best Member Error 
(Roulston and 
Smith, 2003) 

Wang and 
Bishop (2005) 
method 

Fortin et al. 
(2006) 
method 

South 
Sudan 

IV1 0.57 1.52 -4.28 

IV2 0.73 1.45 -3.83 

Jordan 
(2014) 

IV1 0.52 1.02 1.21 

IV2 0.46 1.31 -5.29 

Jordan 
(2015) 

IV1 -0.87 0.32 -2.37 

IV2 0.05 0.56 -23.55 

Rwanda IV1 -0.01 0.51 -11.34 

IV2 0.01 0.92 -18.53 

Bangladesh IV1 0.48 0.82 -306.25 

IV2 0.59 0.95 -1.28 

Tanzania IV1 -1.93 0.22 -11.07 

IV2 -0.58 0.29 -25.50 

Nigeria IV1 -1.60 0.51 -65.10 

IV2 -1.75 -0.01 -7.13 

 



 

Figure C-1: Comparison of post-processing methods for the Bangladesh IV1 

Table C-1 also shows that between the best member error method and the Wang and Bishop 

(2005) method, the Wang and Bishop (2005) method provides the most consistently positive 

Net Improvement Score, as well as providing the largest magnitude of improvement. Based on 

this, we recommend the Wang and Bishop (2005) method for inclusion in the SWOT-ANN 

version 2 analytics. 

C.4 Conclusion  
From the above results it is clear that the Wang and Bishop method produces the best 

performance for the post-processing ensemble forecasts of post-distribution FRC. Thus, we 



recommend this method for inclusion in the SWOT-ANN version 2 analytics. However, we also 

note that the Wang and Bishop method does not always lead to improved performance, and as 

such, the SWOT version 2 analytics should always compare the raw and post-processed 

performance to ensure that the best performing ensemble is used. 
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